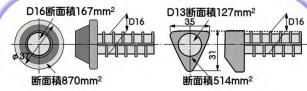
7-1 取替RC床版(取替RC-O)

RC床版の再劣化

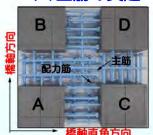
- ○既に下面から補強が施されたRC床版は 再劣化が生じています。とくに、鋼板接着 補強したRC床版は、橋面や下面の損傷は 軽微ですが、内部のひび割れ損傷が著し い傾向にあります。
- ○再劣化したRC床版の補強対策としては 取替RC床版が適しております。


(1) 橋面の損傷状況

(3) 水平ひび割れ発生

RC床版の再劣化

取替RC床版


- ●取替RC床版の継手構造は、配力筋端部には円 形、主筋には三角形状の突起を設け、コンクリート との付着力を高める構造です。
- ●継手部の引抜き試験においては、鉄筋以上の付 着強度が得られております。
- ●取替RC床版に配置する場合は主筋の内側に配力 筋が配置されることから、かぶりは鉄筋と同様です。
- ●片側車線規制のもとで施工する場合は、プレキャ スト床版は並列した軸直角方向と反対車線側の2方 向に継手構造を設けた間詰部が必要です。幅員全 幅にプレキャスト床版を設置する場合は橋軸直角方 向のみの間詰部を設けます。

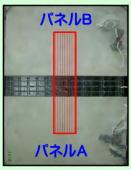
(1)配力筋の突起

かぶり 主鉄筋 配力筋

(2)主筋の突起

(3)かぶり

(4)2方向間詰部の構造


継手部の構造

輪荷重走行疲労実験

- ●実験供試体は道路橋示方書・ 同解説に準拠し、3/5モデルとし ましました。
- ●供試体は同一寸法のRC床版. 軸直角方向に間詰部を設けた取 替RC床版A, 軸直角方向と軸法 の2方向に間詰部を設けた取替 RC床版Bを用いて、輪荷重走行 疲労実験を実施しました。
- ●コンクリートの設計基準強度は RC床版30N/mm², 取替RC床版 40N/mm²以上としました。

輪荷重走行疲労実験 (日本大学生産工学部)

取替RC床版A

取替RC床版B

プレキャスト床版・間詰部コンクリートの配合

取替RC	スランプ	W/C	s/a	単位量 (kg/m3)			減水剤	AE剤	
床版	(cm)	(%)	(%)	С	W	S	G	(C×%)	(C×%)
床版部	10 ± 2.5	35.0	43.2	443	155	732	968	3.1	0.004
問詰部	8 ± 2.5	32.9	40.0	450	148	710	1157	9.0	0.004

耐疲労性の評価

○RC床版と取替RC床版AおよびBの等価走行回数を 比較すると両取替RC床版ともに22倍以上となり、間 詰部が弱点とならず、耐疲労性が向上しました(乾燥 状態)。

等価走行回数

4 ID/C 15 C XX							
供試体	等価走行回数	等価走行 回数比					
RC床版	11,789,979	_					
取替RC床版A-1	265,273,230	22.50					
取替RC床版A-2	274,760,560	23.30					
取替RC床版B-1	272,302,122	23.10					
取替RC床版B-2	273,453,775	23.19					

7-2 施工法

プレキャストRC床版の製作

- ●RC床版の形状に合わせて鋼製型枠を 製作します。鉄筋配置し、順次配合に合 わせてコンクリートを打ち込み養生します。 (現場に近い工場で製作)。
- ●プレキャストRC床版の最大寸法はトラックの荷台寸法を考慮します。
- ●施工日に合わせて、架設現場までトラックで輸送します。

(1)型枠に鉄筋配置 (2)プレキャスト床版輸送 取替RC床版のプレキャスト床版製作

既設RC床版の撤去作業

- ●アスファルト舗装の撤去作業を行います。
- ●床版支点用仮設桁を設置し、搬出用クレーンの能力に合わせ、既設床版を切断します。次に、RC床版の撤去は、一般的には山留め仮設材とセンターホールジャッキを用いて撤去します。
- ●撤去後、主桁の補修および新設プレキャストRC床版を設置・調整の後、スタッドジベル筋の切断作業を行います。(15mの橋梁で片側車線6時間)

(1) 舗装撤去

(2) 床版撤去

撤去 (3) 撤去後の床版 既設RC床版の撤去作業

(4) ジベル筋の取付け

(1) 取替RC床版設置

(2) 間詰部の鉄筋配置

(3) 設置終了

(4) 移動プラントで練混ぜ

(5) 間詰部コンクリート打設

(6) 接着剤塗布

(7) 伸縮装置設置

(8) 完成

取替RC床版の施工手順

※プレキャスト床版と間詰部コンクリートの打継ぎ面には付着用の高耐久型エポキシ接着剤KSボンドを塗布することで打ち継ぎコンクリートとプレキャスト床版が一体化されます。